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Abstract

To facilitate efficient, cost-effective development of in-orbit test (FOT) measure-
ments and turnkey systems, microwave measurement system (MMS) sotftware built on
an engineered platform of reusable software services and facilitics has been developed
over the past several years and deployed in operational systems. The Measurcment
Processing and Control Platform (MPCP) provides modular software components that
have been developed and tested for measurement scheduling, interprocess communica-
tions, and resource and system information sharing. Its code libraries support graphically
bascd user interfaces, instrument control, instrument bus management, and error detection
and reporting; and its data processing subsystems support database management, report
generation, and interactive data analysis.

Operating in a network environment under a UNIX System V operating system,
this multiuser, multitasking MMS soltware supports both local and wide-arca network-
ing, including remote access and control of the IOT measurement cquipment. It cx-
ecutes in a distributed processing system architecture spanning a number of dissimilar
workstations. With interprocess/intermachine communications provided by the MPCP
mail system, the separate user interface and measurement programs can execute on
different machines at different times, for improved operational flexibility.

This paper describes the design and implementation of the MMS software. The
concepts and methods presented are also applicable to other measurement-oricnted
systems (such as those uscd for communications system monitoring), where escalating
software costs must be controlled.
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Introduction

Computer-controlled in-orbit test (10T) systems integrate microwave
measurement equipment, computer hardware, and measurement software into
a unificd test facility for measuring the communications subsystem perfor-
mance of an orbiting satellite. To assess performance, the 10T system conducts
a variety of microwave frequency measurements. These include the measure-
ment of spacecralt input power flux density (IPFD) and equivalent isotropically
radialed power (RIRP); transponder frequency response; gain transfer; group
delay: gain-to-noise temperature ratio, G/T; and others [11,[2].

The development of modern JOT systems is traced by Shen er al. [3]. As
noted in that paper. 10T is performed for acceptance testing immediately
following launch; to monitor communications subsystem performance through-
out the satellite’s operational lifetime; and to investigate anomalies. The specific
missions determine the [OT system’s basic requirements. The fact that newer
satellites contain more transponders and have increased payload complexity
compared to earlier generations places greater demands and constraints on the
10T systems built to test them. Because the satellite owner desires to place the
satellite into revenue-generating operational service as soon as possible after
launch, the 10T system is constrained to accomplish its task as quickly as
possible, especially during acceptance testing. Increased satellite capacity and
complexity have also resulted in greater volumes of test data, which must be
maintained and reported. Finally, the pool of spaccecraft experts available for
performing complex 10Ts and evaluating the data is distributed more thinly as
the number of satellite networks in service increases.

In addition to its primary mission of performing IOT measurements, the
modern computer-controlled [OT system must address such system requirements
as real-time and network operation, human-machine interaction, and remote
access and control of the measurement hardware. The system must provide a
uscr interface that is easy to use, yet flexible enough to accommodate the
various 10T missions. The capability to exccute measurements concurrently
and to support a multiuser environment are desirable system features.

These requirements and constraints place greater responsibility for 10T
system functionality on the software, which must address the network, hardware,
and communications environment of a distributed processing system spanning
a number of workstations. As a result, the 10T software, with its volume,
sophistication, complexity, and difficulty of devclopment and control, has
come to dominate both overall system cost and scheduling. The development
of custom software is time-consuming and costly, and requires highly skilled
personnel. Methods and techniques are continually being sought to make the
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{OT software production process more efficient. By contrast, the cost and
scheduling aspects of hardware implementation for 10T and similar measurement
systems are generally weli-understood and well-controlled.

This paper discusses the principal software concepts underlying
development of the Measurement Processing and Control Platform (MPCP),
which served as the foundation for design and implementation of the microwave
measurement system (MMS) software. Specific applications for computer-
controlled 10T mecasurements and turnkey systems are addressed. A companion
paper |4] describes the implementation of thc MPCP software in a specific 10T
system.

The principles underlying a robust, software-engineered platform such as
MPCP are also applicable to the softwarc implementation of similar
measurement-oricnted, computer-controlled systems, such as communications
monitoring systems. Like computer-controlled 10T systems, these systems
require escalating amounts of software for which costs, scheduling, and quality
must be controlled.

Software development methodology

10T systems are uniquely designed to test specific satellite characteristics
and networks; however, many OT measurement subtasks are the same from
one 10T system to the next. Such commonality of function underlies much of
the MMS design.

Because 10T systems are unique and custom-built, the software
implementation of computer-controlled 10T systems is not standardized, nor is
there a standard IOT software architecture. Riginos et al. [5] contrasts two
approaches to designing such software. In one approach, measurements are
implemented one at a time in a sel{-contained manner. Each measurement
performs all required functions, including instrument control, user interface,
and data processing tasks such as database management, printing, and plotting.
As new measurements are required, an existing measurement is copied and
modified to meet the specific requirements. While this self-contained approach
has certain attributes, such as moderate levels of developmental effort for
succceding measurcments, its use for large-scale systems software development
also contributes to problems in terms of life cycle maintenance, quality,
capability, {lexibility, and extensibility.

Early implementations of computer-controlled 10T systems employed the
self-contained measurement methodology. After several such systems had
been implemented, it was realized that 80 to 90 percent of the mecasurcment
tasks—such as managing the user interface, controlling and managing the
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instruments, managing data and files, reporting and logging errors, plotting
and printing output data—were common (o all 10T measurements. This
rcalization formed the basis for a fundamentally different strategy of building
10T systems and measurements.

This alternative approach, based on a software-engineered platform of
reusable software components, was the one selected for developing the MPCP
and MMS described here. Although the initial design and development effort is
substantial, the engineered platform implementation results in improved
software characteristics in terms of life cycle (reusability, maintainability,
expandability, portability, and evolution), quality (methodology, robustness,
consistency, and flexibility), and capability (remote control, networking, con-
current measurements. distributed systems, and user-driven changes).

Well-conceived and well-implemented reusable software components can
significantly decrease the scheduling and performance risks associated with
large-scale software development. With MPCP components as a base, new 10T
systems and measurements can be implemented in a cost-effective and timely
manner.

The MPCP operaling system

The MPCP is a special-purpose operating system that provides an integrated
platform of facilities, subsystems, and services to the measurement application
program. These include interprocess/intermachine mail communications,
measurement scheduling and resource management, a system-wide shared-
data depository called the datapool, standardized file management, database
management, alarm management, and printing and plotting. Object code
libraries are provided for instrument control, [EEE-488 bus control, uniform
error handling, user interface support facilities, and other utility functions that
can be linked with applications such as 10T measurements.

The MPCP operating system is implemented via the UNIX System Vv operating
system, enhanced with Berkeley sockets for communication and IEEE-488 bus
control functions tfor measurement equipment interfacing. Because MPCP is
implemented in the C and C++ languages, it executes with high run-time
efficiency and is highly portable to other machines.

The basic concept is to design and implement task-specitic modules that
can be independently tested, refined, and expanded. Although the modules are
functionally specialized, a major design goal is generality within the problem
domain of the specific function. Over a period of several years, MPCP was
developed as a platform of 10T system and measurement code building blocks
that could be reused between measurements and across systems. The use of
pre-tested modules substantially reduces the development time, cost, and per-
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formance risk of unproven software. Because ol the functional similarity of
10T systems and measurements, the code reuse percentage for MPCP is quite
high.

MPCP design goals

MPCP implementation follows generally accepted softwarc engineering
principles. practices, and open system standards. These are briefly described
below, with cmphasis on why certain design choices were made, rather than
on how the software is specifically implemented.

Because customers require remote access and control of an 10T system, an
important design goal was (o support a networked, distributed-processing
hardware cnvironment. The MPCP executes in such an environment. A typical
10T system architecture is shown in Figure 1.

Another principal design goal was to separate functional tasks into dedicated
processes that could execute in distributed-processing, networked environments.
A “process™ is a program that is being executed in the host machine. Each
process performs a specialized task with well-defined external interfaces. For
example, an IOT measurement inputs parameters from the user, manages the
hardware during data acquisition, saves the data in a database, and prints or
plots the measurcd data. The overall measurement is implemented as two
separate processes: one that interfaces with the user, and another that manages
the measurement equipment and performs the actual measurement. The 10T
system’s scheduler, datapool. and earth station management facilities arc
implemented as self-contained dedicated “daemon” processes (i.¢., processes
executing continuously in the background of the UNIX operating system). The
printing and plotting tasks are similarly managed. Problems are generally
contained within a specific process, and task-specific programs can be modi-
fied and recompiled when necessary, with little or no impact on the interfaces.

With separately executing processcs, interprocess communication is required.
This capability is provided by the MPCP mail subsystem, which client processes
can access via calls to a library of mail functions. The mechanisms used by the
mail subsystem are completely transparent to clients. To support a distributed
processing (multiple-host) execution environment, the mail subsystem facilitates
intermachine interprocess communications in which processes can exccute on
different host workstations and computers connected via a transmission control
protocol/internet protocol (TCP/IP)} network. Figure 2 depicts such an
arrangement, with each box representing a scparate workstation or computer.

Following another software principle, the MPCP is structured in a top-
down hierarchy which permits the software to be partitioned according to
function, and distinguishes between high-level and low-level functions. An
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JOT measurement program, {or example, is a high-level task. With proper code
structuring, the software developer who implements a high-level measurcment
program neced only be concerned with orchestrating the logical sequence of
activities necessary to perform the measurement, and not with the details of
lower-level functions. Whilc the measurement may be required to access
instruments, the details of instrument management are lelt to the driver that
controls cach instrument. Similarly, while the instrument driver excrts control
via messages sent across the IEEE-488 bus that connects the instrument to the
compuler, the developer of the instrument driver need not be concerned with
the details of managing the bus. Tnstead, the developer has available an IEEE-
488 library of bus management functions. MPCP services such as the scheduler
and datapool arc conceptually at a level below that of the 10T measurement.
but above lower-level functions such as the 488 library. At any level, the
software developer has available the building blocks of lower-level MPCP
facilities, and can access them through well-defined interfaces. Figure 3 illus-
trates the general nature of this hierarchical implementation of MPCP.

An important objective in building computer-controlled 10T systems is (o
maintain data integrity by preventing corruption [5]. “Defensive code™ is used
to detect error conditions and trap them before they propagate through to
corrupt the measurement data. Each module performs extensive error checking
of its inputs, as well as on the results of its own processing. Error-trapping is
performed by all levels of code. When errors are detected at any level, they are
managed consistently by calls to an crror handling library, which underlics all
upper levels of code, as depicted in Figure 3. Error detection and reporting
throughout the code allows effective tracing of both programming crrors and
operational errors (e.g.. a disconnected instrument). Error handling techniques
are discussed later in this paper.

The mpcp Function Libraries also extend under all upper levels of code.
These libraries arc used to segregate low-level functions from higher levels.
and are generally accessible by any program, although access to functions is
usually through the hierarchy of code modules.

As in hardware system design, a large software system such as an 10T or
measurement system is more casily managed by decomposing it into smaller
functional components, which are then treated as individual subsystems.
Subsystems are self-standing software projects which encompass a group of
similar and related functions that can be specified and implemented individually.
Changes in one subsystem are generally localized and do not usually affect
other subsystems. Decomposition of a large software project promotes modu-
lar system design, with the result that the project is easier (o design, implement,
and ¢nhance.
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To achicve the design goals of maximum code reusability and system
implementation flexibility, the concept of data-driven design is employed
throughout the MMS. Whenever possible, the data that programs use are
separated into static ASCII text files that arc human-readable and easily edited.
The program’s behavior can be altered by simply editing the data file, rather
than changing the program code that processes it. This results in programs
that are casier to develop, test, and maintain, and that have the flexibility to
accommodate varying requirements from one 10T sysiem to the next.

The user interface is designed tor ease of use and flexibility, and also has
the ability to check for erroneous uscr input (as far as practicable). The
interface is implemented separately from the measurement program, and is
called the measurement-uscr interface (Mu1). The user interacts with the MUI
via an X Window to specify 10T mcasurement parameters and scheduling
information. The MUl display format is controlled by input data files, which
are easily modificd by simple editing of AscCll-encoded text files, without the
need for program code changes. The user is notified if out-of-range data
values are entered. To reduce keying, the MUI is initially displayed with
default values preloaded in all fields and parameters.
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Because cach task is specialized, the module’s developer focuses on the
specific problem at hand and optimizes the code for that task. With well-
defined, constant interfaces. modules can be modified or improved without
affecting other modules. New modules, such as new instrument drivers, can
readily be added to the system, often by using an existing driver as a template
and modilying it as necessary.

Systems applications

Two systems are described which demonstrate the code reusability of the
MPCP software building blocks. Although these systems ditfer substantially in
mission and requirements, the MPCP platform provided the software foundation
upon which the application-specific code was built.

In the first example, an 10T system using MpCP building blocks was designed,
implemented, and deployed for the European Telecommunications Satellite
Organization (EUTELSAT) [1],[2]. This system has performed the (0T of four
EUTELSAT If spacecralt, and continues to monitor their performance.

In the second example, MPCP components were used to implement RE
terminal supervisory equipment for a National Aeronautics and Space
Administration (NASA) ground station for the Advanced Communications
Technology Satellite (ACTS) program. In this system, a network of three
engineering workstations, supporting three simultaneous operators, performs
supervisory, status, and control functions for terminal and ground station RF
equipment.

Communications and network environment

The 10T system architecture supports local and wide-arca networking (LAN/
WAN). as well as several communications protocols, network structures, and
transmission media. The system’s transport/network layer implements TCP/IP
to guarantee end-to-end data delivery and integrity between communicating
devices on networks that support this protocol. The LAN’s physical layer
implements the IEGE 802.3 (CSMA/CD Ethernet) protocol on coaxial cable op-
erating at 10 Mbit/s. The LAN connects 10 workstations, displays, terminal
servers, peripherals, communications equipment, and other PC-based LLANs, as
shown in Figure I. The system supports WAN across lcased lines, public
switched telephone networks, and public data networks at rates ranging from
2.4 to 19.2 kbit/s, with link-limited transmission speed. Standard serial com-
munications via RS-232 protocols and modem-connected data links are also
supported. As illustrated in Figure 1, a complement of microwave measurc-
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ment cquipment is connected to the 10T system workstation at the host carth
station via the IEEE-488 digital instrumentation standard bus.

This networked system architecture provides for equipment and resource
sharing, operational flexibility, performance enhancement, incremental
redundancy, and vendor and hardware independence. Sysiem resources such
as measurement hardware, plotters, printers, and communications facilities are
shared among 10T measurements and users. Incremental cxpansion of
computing, storage, display. and communications devices, as well as additional
peripherals, are readily accommodated. Additional workstations can be
connected to the network for load-sharing, and processes can execute on
different machines for operational flexibility and improved performance.

An important consideration when implementing a network-oriented system
is the ability to support interproccss and intermachine communications. The
X Window protocol supports communications in a network of dissimilar but
X-compatible workstations. When processes reside on the same machine,
Berkeley sockets supporl interprocess communications. The MPCP mail
subsystem also uscs Berkeley sockets to implement a higher-level mechanism
for interprocess communications that extends across machine boundaries.

MPCP mail interprocess communications

The MPCP mail subsystem provides clients with high-level, reliable, and
easy-to-program facilities for interprocess, intermachine, and internetwork
communications. The subsystem does the following:

* Provides interprocess communications (using TCP/1P) for different pro-
cesses operating on separate workstations across the network.

* Provides “atomic” transmission (data treated as an indivisible unit) of
large data structures.

» Provides the sender with verification of transmission.

* Implements a client-server model.

* Notifies clients if a connection is lost to a server process.

The MPCP mail subsystem supports the first three features in a fashion
similar to its main paradigm: the postal system. A client process mails data to
another process at a given address. The various data items to be mailed are
enclosed in an “envelope,” which is received and/or delivered at the same
time. Like the postal mail system, the mail subsystem handles all delivery
details. Atomic transmission ensures that input/output transactions, once started,
are completed without interruption. When the addressee receives an envelope,



112 COMSAT TECHNICAL REVIEW VOLUME 23 NUMRBER 1. SPRING 1993

the sender is provided with a “return receipt” (acknowledgment) verifying
successful transmission.

The MPCP mail subsystem software implements the last two features based
on a second paradigm: an open telephone line between a client and a server.
Using the mail subsystem. a client (i.e., a process that requires some service)
establishes an open line with a server (the process providing the service, such
as the scheduler or datapool). Once the line is established, mail can be ex-
changed between client and server. If the scrver process terminates or there
are problems in the network, the line is disconnected. The client process
detects the disconnection and reports an crror condition. Any number of
clients can be supported in the network. For example, all MU processes are
served by the scheduler. There can be auny number of servers of different kinds
in the network, but there is only one server of a particular kind. such as the
MPCP scheduler.

Process-to-process mail communications are supported when processes
execute on different machines connected to the network. This feature permits
a distributed processing system implementation in which there may be more
than one machine with multiple clients and servers hosted on different machines,
as depicted in Figure 4. In the figure, ST, 82, S3. and S4 represent different
kinds of server processes, such as the scheduler, datapool, alarm manager, and
carth station interface manager. The lines connecting clients to servers are
mail connections, which are supported across serial data links.

The MPCP scheduler

The MpPCP scheduler is a server process that provides scheduling and resource
allocation across the network. The scheduler exccutes in the UNIX system
background as an independent daemon process and accepts requests for jobs
and resources [rom other processes. Scheduling is non-preemplive and is
provided on a first-come, first-served basis. Jobs are run based on the requested
time and the availability of resources. The scheduler exchanges messages with
its clients via the mail subsystem, and receives requests from MUIL processes to
schedule a measurement process at a specified time. The scheduler manages
the sharing of resources, handles global remote/local control of instrumentation,
and provides the means for a user to determine the status of a job that is
running in the background.

Measurements can be scheduled by the user to run at any time of day, on
any day. They can also be scheduled to run repetitively for a user-specified
duration at a user-specified interval. Multiple measurements can be scheduled
for exccution at any time. The scheduler also supplies the link necessary to
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communicate scheduling information between the MUI and the mcasurement
processes.

When the time arrives to execute the requested measurement, the scheduler
verifies the availability of the required resources and initiates the measurement
process in the appropriate workstation. When the measurement process begins,
it requests from the scheduler (via mail) the needed resources. The scheduler
determines that a mail connection has been established with the measurement
process, and that the process is actually executing. It then grants the requested
resources and locks them for the duration of the measurement, or until the
mail connection between the scheduler and the measurement process is broken.
By ensuring that the process is actually running before resources are committed,
the scheduler prevents a potential lockup situation. If the scheduler were to
begin a measurement process and immediately allocate and lock the resources,
the measurement could fail to start for some reason, or fail to establish a mail
connection, and the resources would be unavailable for other uses.

If the resources rcquired for a scheduled measurement are unavailable,
execution of the measurement is deferred until they become available. Since
scheduling conflicts are resolved on a first-come, first-served basis, a particu-
lar measurement may have to wait its turn in a job queue. A planned expan-
sion of the scheduler will provide for the prioritization of measurements.

An example will illustrate the scheduler’s operation and interaction with
measurement processes. A system comprising three workstations, with one
spectrum analyzer and two power meters connected to workstation 3, is
assumed. MUI programs in workstations 1 and 2 have each requested that an
EIRP measurement be performed at 10:00 a.m. the next morning. In addition,
workstation 2 has requested a power measurement at the same time. EIRP
measurements require both a spectrum analyzer and a power meter, while
power measurements require only a single power meter.

At 10:00 a.m. the following morning, the scheduler ascertains that both
power meters and the spectrum analyzer are available, and grants the request
from workstation 1 (which was received first) by executing an EIRP
measurcment and locking power meter | and the spectrum analyzer. As a
result, the FIRP measurement request from workstation 2 cannot be granted at
this time, since only power meter 2 is available. Since the power measurement
also requested by workstation 2 requires a single power meter, the scheduler
initiates the power measurement process, establishes a mail connection with
that process, and locks power mcter 2. When the first EIRP measurement
terminates and both the spectrum analyzer and power meter 1 become available,
the scheduler executes the EIRP mcasurement requested by the MUI process
running on workstation 2, establishes an open mail connection with the EIRP
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measurement process, and locks power meter | and the spectrum analyzer for
the duration of that measurement. When the measurement process terminates
(normally or abnormally), the scheduler releases the resources, which are then
available for the next request.

The scheduler determines when to start a particular measurement, based on
the system clock and the scheduling information provided by the MUl when
the measurement was specified. The UNIX operating system could start jobs at
the scheduled time, if that were the extent of the requirement. However, the
scheduler performs two additional, essential functions. First, it begins a job at
the scheduled time with the user-specified arguments, which can vary in
number and value with each running of a measurement.

The second, more fundamental function of the scheduler is to manage the
sharing of one set of microwave measurement and earth station equipment
resources. These resources include microwave test equipment (such as the
spectrum analyzer and power meters), earth station equipment (such as uplink
and downlink chains, the antenna, automatic saturation control units, and
radiometers), files, mail connections, and memory. Each resource is identified
by name (resource ID) and the maximum number of users. Resources may
also belong to resource groups, in which case the group is given a single
name, such as “Uplink 1,” which would include the entire chain of earth
station equipment forming an uplink. The scheduler can allocate both indi-
vidual resources and resource groups to jobs. Resource sharing is cooperative,
not enforced or precmptive.

The scheduler also manages the state of resources when they are not
controtled by a measurement process. For example, it makes certain that
instrumentation used by a job is placed into a quiescent state when a job is
complete. This ensures that jobs cancelled abortively do not leave instrument
resources in an undesirable or unknown state. Since the scheduler controls all
system resources, il is responsible for handling user requests to place
instrumentation into its local state when it is not being used by an executing
process. Such requests from measurement processes are handled via the MPCP
mail subsystem.

The MPCP datapool

The MPCP datapool server is a memory-resident data area that functions as
a depository for information to be shared system-wide. All OT system processes
can access the datapool, which will accommodate arbitrary data. The datapool
implements a client-server model in which clients such as MUI processes
update entries in the datapool and/or request the most up-to-date information
from the datapool, via the mail subsystem.
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Maintaining data integrity within the datapool and preventing “racing”
conditions are critical design issues. A racing condition can arise as follows.
Suppose process A reads the current value for datum 1 in the datapool and.
based on that information, updates datum 2 in the datapool. Process B has
previously read datum 2, prior to its update by process A, and, based on this
information, updates datum 1. Process A assumes that the datum 1 value it
read is valid and up-to-date, when in fact datum | was subsequently updated
by process B. Thus, process A continues execution with data that are not
current. Similarly, process B assumes that the datum 2 value it read is valid
and up-to-date, when in fact datum 2 was subsequently updated by process A.
At this point, a racing condition has been created in the datapool, and neither
process has up-to-date data. This situation is avoided by implementing the
datapool as described below.

The datapool is not merely a passive receptacle and reporter of data,
because it can notify clients of changes to datapool entries. A client can
register with the datapool a list of entries of interest. Whenever the status of a
list entry changes (e.g., it is changed in value or deleted, or the process that
owns the entry terminates), the client is notified by the datapool and provided
with the current value for the data item. A client may request and receive the
current value of any item in the datapool at any time, and thus is assured of
having the most up-to-date values for items of interest.

As shown in Figure S, client processes do not access the datapool directly.
When they need to add, modify, or remove data, clicnts access the datapool
via a library of datapool functions. These functions then transmit the request
to the datapool process, which accesscs the data arca on behalf of the clients.
Only the datapool process can access entries in the data area itself, to prevent
potential corruption of the datapool by client processes and to maintain datapool
integrity. A data-locking mechanism is applied to guarantec that only one data
update can occur al any given time.

System-wide standard messages are uscd to transmit information to and
from the datapool. A typical datapool process operation involves two types of
message transmission: the client’s request message received by the datapool
process, and the acknowledgment returned with the requested data to the
client. All communications between the datapool and its clients (Figure 5) are
via the MPCP mail subsystem, which is transparent to clients. Datapool functions
are available to the client to request data creation, deletion, modification,
retrieval, and the addition or delction of the client process trom the notification
list. These functions assemble mail messages, send mail to the datapool process
via the mail subsystem, and inform the calling program whether or not the
operation was successful. The datapool library implementation hides both the
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Figure 5. MPCP Datapool and Clients

type of interprocess communications media and the fact that messages are
used.

The datapool also supports the operation of the Muls. When an MuI is
opened by a user, it establishes a mail connection with the datapool. Assume,
for example, that client process | in Figure 5 is an MCUT in which the user has
specified spacccraft 1, and client process 2 is another MUL in which spacecraft 2
is specified. If a third MUI is opened, it may want to know toward which
spacccraft the earth station is currently pointing, or if another process changes
the current spacecrafl in the datapool. The datapool maintains such system-
level information and can notify a requesting clicnt process of the current
status and configuration for both the spacecraft and the earth station.

10T measurement implementation

10T measurements are the core of computer-controlled 10T systems. An 10T
system is composed of numerous IOT mecasurement programs, their
corresponding Muls, and system control and data processing functions. This
section discusses the concepts and principles underlying the implementation
of measurcments. Overall software organization, data-driven design, uscr
interfuce implementation, error handling, and data processing features are
described.

Since measurement data are a primary concern in an IOT system, data
integrity is essential. Because the measurement is often fully automated, the
measurcment code must be able to detect and report errors, which can arise
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from many sources, including real-world anomalies. For example, a measure-
ment may require the use of a piece of test equipment that has been turned off
or disconnected. The code then issues an error message, and the user may
correct the problem {e.g., reconnect the instrument) and request that the mea-
surement continue, or cancel the measurement.

Measurement architecture

The ideal 10T is one in which the overall measurement is implemented as
two separate programs: the MUI, and the measurement itself. A model of the
10T measurement architecture is shown in Figure 6.

Communication between the MUI and the measurement processes 1s
facilitated by the MPCP mail subsystem, the scheduler, and the datapool server.
The mail subsystem provides interprocess communications between the MUl
and the scheduler, and between the scheduler and the measurement program
or other peer client processes. Properly designed interfaces between commu-
nicating processes are esscential for coordinating the various activities associated
with the overall measurement.

The scheduler allocates system resources, including earth station resources,
and maintains their availability status. The MUI sends a job request message
via the mail system to the scheduler and communicates the name of the
measurement program, the name of a file containing a list of measurement
arguments (called the “argsfile”), and scheduling information. Before starting
a job that invokes a measurcment program, the scheduler determines the
availability of required resources by accessing a file that lists the resources
required by each measurement. If the resources are currently unavailable, the
scheduler places the job in a job-wait queue and reschedules it.

If the resources are available, the scheduler starts the measurement via a
command to the UNIX opcrating system. If UNIX initiation is successful, the
program becomes an executing process. The measurement process performs
an initialization and establishes a mail session connection to the scheduler. It
then accesses the resources file and sends the scheduler a message indicating
that the process is initialized and running, and requesting access 1o system
resources such as the spectrum analyzer, an uplink path in the earth station,
and an uplink synthesizer. If available, the resources are allocated as requested.

By structuring the overall measurement in this manner, MUI and measure-
ment programs can be designed, implemented, tested, and maintained
independently and in parallel. This supports modularity and encapsulation of
the respective programs. Team personnel with complementary skills can work
on different tasks, making optimum use of their software capabilities and
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experience. Each program developer uses the most appropriate programming
paradigm. For example, since the user interacts with the MUI via a mouse and
keyboard, the MUI must respond to unpredictable events {e.g., a mouse click or
the pressing of a key) and is thercfore implemented using an event-oriented
programming paradigm. The measurement program, on the other hand, inter-
acts with the microwave mcasurement and earth station equipment in a
predictable manner, and thus is implemented in an algorithmic, procedurc-
oricnted programming paradigm (although it can be interrupted by unexpec-
ted behavior when an instrument issucs a service request interrupt on the
IEEE-488 bus).

Data-driven implementation

The MMS software is implemented by using text files and avoiding hard-
coding wherever possible. As shown in Figure 6, text files arc used to exchange
information between processes, as a complement to interprocess mail
communications. The following files are used, and will be discussed in context:
MUI input, measurement argument, stub, resource, spacecraft configuration,
earth station calibration data, measurement parameter, and print and plot style.
Since these files are structured during the system design phase, they can be
constructed to hold any information desired, and can be customized to mecet
customer requirements. Thus, the files provide flexibility and adaptability to
the measurement system design.

Both the file management procedures and storage format are standardized
within the Mms software. File operations such as open, read, write, and closc
arc performed via calls to an MPCP library. Files arc formatted in a standard
COMSAT Data File Format (COSDAF) and stored as ASCli-coded text. COSDAF
files can be viewed, edited, and imported into other application programs.

System behavior can be altered by editing the files, which minimizes the
need to recompile the program when changes are required. For cxample, the
appearance of an MUl window on the display is controlled by an MUl input file.
The number of MUI controls, their position, and type (e.g., pushbuttons, edit
fields, and pop-up menu selections) arc casily changed by editing this file.

Although MMS files arce casily edited, they are static in the sense that they
generally remain unchanged for a particular sequence of 10T measurements. In
fact, once constructed, they seldom change, although they can be modificd
when nccessary. The spacecraft configuration file. for example, includes
information regarding spacecraft characteristics, channel characteristics such
as center frequency and bandwidth, wansmit and receive beams, transponder
gain settings, and orbital parameters. Another file, the frequency plan. identifies
channels and/or carrier slots, their center frequencies and bandwidths, power
threshold levels for alarms, expected signal modulation, and other frequency-
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related information. Other files, such as the earth station calibration file, store
calibration information such as antenna gain vs frequency and coupler value
vs frequency.

The measurement process rcads particular files when required. The use of
common files by diffcrent measurement processes guarantees uniformity of
information. Also, since the uscr does not have to constantly reenter the same
information through the keyboard, user input errors and fatiguc are reduced.

Cser interface design

Effective operation of a measurement system is highly dependent on the
design. behavior, {lexibility, ease of use. and consistency of the user interface.
More than 30 years of human-machine interface rescarch (References 6 and 7,
for example) have indicated that the most effective technique is a graphically
based interface that allows a user to indicate a desired action by “pointing and
clicking” in windows on the display by using a mouse device. The keyboard is
used to enter parameter values and data. This technique is in contrast to the
older command-linc-based interface that requires the user to accurately
remember and type in esoteric command codes. Graphically based interfaces
are nOW common on many computer systems, such as the popular Apple
Macintosh [8] and desktop computers running Microsoft Windows. The
X Window-based Mui enables the IOT system user to specily measurement
parameters. It contains edit ficlds, pushbuttons, toggle buttons, and radio
buttons. Buttons are actuated by pointing and clicking with the mouse. A
typical MC1 is shown in Figure 7.

MUIs and other windows meet the following IOT system operational
requirements:

» Permit the user to easily, quickly, and intuitively set up IOT

mcasurements.

* Enable the user to search through the measurement database to retrieve
files meeting user-specificd criteria.

* Enable the user to process high volumes of measurement data into

lots and printouts.
p

* Inform the uscr of input range and type errors.

* Inform the system operator of errors encountered during measurements
and other activities.

* Require minimal training, so new users can gain proficiency rapidly.

* Preserve operational flexibility for nonroutine activitics, such as
anomaly investigations.
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Figure 7. FLUX/EIRP Measurement User Interface Window

Some 10T measurements can be run automatically, without the presence of
an operator, while others are interactive and require operator inputs through-
out the measurement. Some measurements can be run in either mode (selectable
by the user as the “Non Interactive” option shown in Figure 7), which can be
toggled on or off by clicking the mouse.

Implementation of an effective user interface requires careful thought and
considerable effort. All MUIs and other windows are implemented using Open
Software Foundation’s OSF/Motif toolkit and style guidelines [7]. MUIs are
implemented to be consistent in behavior and similar in appearance. Buttons
and controls that perform the same function from one MUI to another are
positioned in the same location, so that the user who has learned one MU has a
familiar model to follow. When opened, MUIs are displayed with default
parameter values and control settings, and have a “form-fill-in”/menu-selection
presentation format. The default values are read from an ascn file, which is
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easily modified. If an input is invalid (e.g., an out-of-range value is typed in),
the user is immediately notified of the error and prompted for another input.

Often, scveral input parameters are coupled in a dependency relationship to
preserve maximum operational flexibility. If a user specifies a parameter that
is coupled to others, the related parameter or parameters will also be changed
automatically. For example, the user may be required to specify a bandwidth,
a step size, and the number of steps to be performed by a measurement. These
parameters may be coupled such that specifying the number of steps and step
size automatically determincs the bandwidth parameter as their product.

MUI-measurement process interface

Once the user has configured the measurement via the MUI, the specified
parameters and controls are communicated to the measurement process via a
command-line interface similar to the standard UNIX system command interface.
In normal operation, the user initiates a particular measurement by filling in
the appropriate MUl and scheduling the measurement. The MUI is displayed on
a workstation or X-Terminal. The user then presses the OK button on the MUI
{see Figure 7), and the MUI communicates this information to the measurement
process via the scheduler. At the scheduled time, the scheduler checks to see if
the required resources are available, starts the measurement process, establishes
a mail connection to the process, and allocates the requested resources.

To preserve maximum system flexibility, measurement programs can be
run without an MUI workstation or X-Terminal by using a standard character-
based ASCIT terminal. A user can run an 10T measurement at the host earth
station from a remote site, such as the user’s home, by using a personal or
portable computer and modem. For example, during an anomaly investi gation,
it may be desirable to alter the normal flow of system operation or to make a
particular series of measurements not implemented by the 10T system MUIS.
This flexibility is achieved as described below.

Following UNIX conventions, an 10T measurement program can be invoked
from a connected terminal by typing the name of the executable program and
optional arguments as follows:

meas_name [-opt <opt_arg> ...]

where meas_name is the name of the mcasurement program, -opt specifies
an option, and <opt_arg> specifies an argument to an option. For example,
the command line to invoke the IPFD/EIRP measurement with options set for a
3-MHz search bandwidth and saturation is

flux_eirp -Search_bw 3.0 -Saturation
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The PFD/EIRP measurement program is invoked and instructed to set the
search bandwidth on the spectrum analyzer to 3.0 MHz and perform the
mieasurement at saturation. The arguments available to cach 10T measurement
are customized for that particular mcasurement. Any control available in the
MU! can be centered as a command-line argument.

A measurement typically requires numerous controls and parameter settings.
Normally, the mut handles all controls: however, the number of controls can
present a problem for manual entry via a command line. Since the command is
transitory, whenever a measurement is repeated (perhaps with different options),
the measurement command and its arguments must be reentercd—a tedious
and error-prone process. One solution is 1o place measurement arguments into
an arguments file. Once constructed, this file is permanent, regardless of the
options stored. The argsfile can be configured with a set of default options.

To accommodate the use of the argsfile, the measurement program extends
the conventional UNIX command-line invocation with one additional argument
-args <argsfile>. The -args option instructs the measurement process 10
obtain its command-line arguments {rom the file named in the parameter,
<argsfile>. If an argsfile has been created for the IPFD/EIRP measurement, the
measurement program can be invoked from the UNIX command linc as follows:

flux_eirp -args my_args

where the file my_args contains the arguments -Search_bw 3.0 and
-Saturation. Once again, a data-driven design approach is used (o preserve
maximum operational flexibility and adaptability.

The ability of the measurement program to receive its arguments from an
argstile provides the necessary interface between the MUT and the measurement
program. When the MUl window (e.g.. Figure 7) is opened, the parameters are
displayed with defauit settings which the user is free to alter to accommodate
a specific measurement configuration. When the measurement specification is
complete, the user presses OK. The MUI program then creates an argsfile
containing the specitied arguments and parameters for use by the measurement
process (as depicted in Figure 6). Use of the argsfile minimizes the number of
entries required from the user, since most of the defaults are unchanged.

Measurement program implementation

The measurement program focuses on the measurement task itself. For
example, although the measurement process (a program in exccution) outputs
a data file of results, it is not respounsible for storing, displaying, printing, or
plotting the data. These tasks are managed by other processes. Similarly, the
measurement program is decoupled from the particular spacecraft upon which
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it will perform the measurement, and spacceraft information is communicated
from the MUI program via the argsfile.

Measurement programs are implemented in a modular manner using object-
oriented design and implementation techniques [9]. This results in a high
degree of cncapsulation. Using the class terminology of object-oriented
programming, a generic “Mcasurement” class is implemented with attributes
(such as data declarations, data structures, and methods) that are common to
all 10T measurements. Mcasurement-class methods include performing
initialization and establishing a mail session with the scheduler, opening files,
checking arguments passed via the argsfile for validity, configuring uplink
and downlink equipment, performing up- and downlink measurements, storing
the final output data, pausing the measurement, and canccelling the measurement
when requested by the user. Since these common tasks comprise the bulk of
the measurement, it is appropriate to aggregate them into a generic class.

Measurcment programs are coded in C++, a language designed to support
object-oriented programming and the construction of classes of objects with
inheritance relationships. Figure 8 illustrates the class structuring and inheri-
tance relationships of some of the 10T measurements. The implementation
of measurcment programs as classes of objects allows the developer to
“leverage” code using inheritance, as explained below. This enhances relia-
bility because cach softwarc element is tested thoroughly every time it is
leveraged and reused. As a result, greater emphasis can be placed on measure-
ment technique, rather than measurement mechanics.

Inheritance enables the measurement developer to leverage code as follows.
Using the inheritance properties of C++ |10], an EIRP mcasurement is
implemented as a subclass (or derived class) of the generic Measurement
class. The EIRP measurement inherits all of the data structures and methods of
the “parent” Measurement class, and implements additional structures and
methods as well.

The gain transfer, in-band frequency response, and spurious output
measurements are subclasses derived from the EIRP class. Gain transfer is an
EIRP measurement performed at different uplink power levels of a test signal;
frequency response is an EIRP measurement performed at different frequencies
in a spacecraft transponder channel; and spurious output is an EIRP mcasurement
performed on a specific spurious signal received from the communications
satellite. These measurements inherit the data structures and methods from the
parent EIRP class, as well as from the “grandparent” Measurement class, with
additional structures and methods implemented to accommodate measurement-
specific requirements. Thus, the developer of the gain transfer measurement
can focus on issues unique to that particular measurement, while reusing or
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Figure 8. 10T Measurement Class Structure

“leveraging” the previously tested code for the EIRP and Measurement classes
from which it is derived. This repeated testing improves overall software
reliability.

Class-structured, object-oriented implementation of measurement procedures
enhances code flexibility and adaptability. For example. the gain transfer
measurement program can be modified without affecting other measurement
programs, such as in-band frequency response. On the other hand, global
changes can be made by modifying and recompiling the generic Measurement
class. Its derived classes inherit the moditications upon recompilation.

An 10T measurement is constructed as a hierarchy of modularized code
layers. The main program is linked with various libraries to create the executable
program. These libraries include application-level libraries (e.g., Measure-
ment and EIRP class libraries); MPCP libraries (e.g., measurement support,
instrument drivers, IEEE-488 bus management, mathcmatical, and utility func-
tions, and error management); and UNIX system libraries (e.g., device input/
output). The typical layered code organization of the in-band frequency re-
sponse measurement program is illustrated in Figure 9.
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The main program makes a sequence of calls to functions in the EIRP and
Measurement class libraries. These, in turn, call functions in the MPCP
measurement support library, which perform tasks required by all measure-
ments, such as initializing hardware, creating and opening files required
by the measurement program, and performing housekeeping and cleanup
activities.

Instruments are accessed by measurement support library functions via
drivers in an instrument library. Instrument drivers perform high-level
operations such as initializing the instrument, changing its settings, and reading
the measured results. Each driver contains functions for its particular instrument.
Drivers have been implemented for:

* Spectrum analyzers

* RF and waveform synthesizers
* Network analyzers

* Modulation analyzers

* Noise analyzers
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» Frequency counters

* Power meters

* Voltmeters

« RF switch controllers

« Data acquisition units.

The driver provides a simple interface with the software developer using
the instrument. Because data integrity is a principal concern, the driver is
capable of detecting and reporting crrors that may arise from interactions with
the instrument, and handles the instrument’s software control capabilities.
This cnables the developer to focus on instrument usage, rather than on the
detailed mechanics of communicating with the instrument.

Instrument drivers communicate with instruments via the IEEE-488 bus by
using the MPCP 488 library, which provides high-level bus management function
calls to the driver. The library performs atomic 1/0 with a given instrument, so
that an 1/0 transaction. once started. cannot be interrupted. This allows the
same instrument to be shared by multiple processes.

The 488 library also performs such functions as sending an Interface Clear
signal to all instruments, writing a command string to an instrument, reading a
response string from an instrument, addressing an instrument to talk or listen,
retricving the bus and address of an instrument when multiple buscs are
present, and performing a serial poll of an instrument to obtain its status byte.
These functions are generally called by the instrument drivers, but can also be
called by other programs for communication with other [EEE-488-compatible
devices such as computers or special-purpose hardware. The 488 library frees
its user from bus management details.

Functions in the 488 library call low-level, primitive functions supplied
with the UNIX operating system device 1/0 library. These primitives interact
with the UNIX kernel (which directly controls the 1EEE-488 bus) through an
interface card. A cable connects the workstation’s interface card with the
instruments, which are daisy-chained onto the 1EEE-488 bus through cables.

An instrument may be used in the shared mode in which it is checked out
{from the scheduler, or may be managed completely by a device process. In the
shared mode. the instrument (if available) is checked out from the scheduler
as described previously. The measurement is not allowed to run if any of the
required instrumentation or other resources are unavailable. In the second
case. the instrument is fully managed by a device process. All requests are
issucd to the instrument in the form of messages to the device process, which
then communicates with the particular device or instrument. The device is not
always a measurement instrument, but may be another computer that controls
and communicates with such earth station equipment as the uplink power
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meter, radiometer, or anlenna control unit. In general, the shared mode is
employed for instruments that are used occasionally by some measurements,
while the device process is employed for instruments used by all measurements
(e.g., to communicate with a separate ecarth station control computer).

Other MpCP libraries, including utility libraries, a mathematics library, and
the error handling library, are also linked to the measurement program. Scveral
utility libraries provide uscful functions required by 10T measurements or by
other libraries, such as calculating EIRP, flux density, path loss, spacecraft
gain, spreading factor, and slant range. The math library contains numerous
mathematical functions routinely required in 10T and other measurement
systems, such as numerical integration and linear regression analysis. The
error handling library, which is used universally by all components of the
software sysiem, is described below.

Mcasurement programs executc as processes to perform actual
measurements. In object-oriented terminology, a measurement process is an
“instantiation” of thc measurement; that is, it is an instance of 4 measurement
program cxccuting with parameters specified by the user.

A mecasurement process accesses several files, as illustrated in Figure 6.
When the user specifics and schedules a measurement in an MUl window, the
MUT process creates an argstile and a stubfile. The stubfile contains annotations
for the specific measurement (e.g., the spacecratt selected, earth station name,
wcather conditions, comments, and the date and time) which do not affect the
measurement itself. The mecasurement process obtains arguments from the
argsfile and opens the stubtile, to which it appends measurement data. The
process reads the resource file for the resources it requires, and the earth
station calibration file for earth station antenna and coupler calibration data.
The process may also access a parameters tile for mecasurement-specific
parameters.

Also, during measurement execution, the measurement process configures
and controls the microwave measurement equipment for data acquisition, and
communicates with the scheduler. It interacts with the earth station daemon
process to obtain relevant information, and issues dialog windows to the user
via a dialog manager process. Real-time measurement data are displayed on
the workstation monitor as the measurcment progresses (as depicted in
Figure 6), along with the status of the measurement. The final measurement
data file is stored in the database, printed, and plotted.

Error subsystem design

Error detection and management are critical considerations in the design
and implementation of a computer-controlled 10T system or similar
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measurement-oriented system. The MMS software is implemented to detect as
many crrors as possible, in order to prevent data corruption.

Two broad categories of errors can be manifested. Operational errors occur
when the measurement process detects some condition or circumstance coded
in the program to be an error. For cxample, an operational crror occurs when
an instrument required by a measurement cannot be initialized because it is
powered-off or disconnected from the computer, or a printer is oftf-line or out
of paper. If an operational error cannot be corrected, the measurement process
must be aborted. Other crrors are manifested as programming errors. It is
important to detect both types of errors in a timely fashion and to obtain as
much information as possible concerning the circumstances that gave rise to
the error, to assist in diagnosis and correction.

The MPCP error library contains functions for assembling logging, and
displaying error messages. When an crror is detected, the specific function
name and line number at which the error occurred are recorded.

Each layer of code is implemented to detcet and report errors occurring at
that level. Because of the layered software architecture, error reporting is
stacked into a composite error message, as shown in Figure 10. When an crror
is detected, an 10T measurement program at the highest code level [e.g.. t10)]
places a message into a stack. Each lower layer of code [f2(), 3(), and £4()}
then places its own message onto the stack, so that the composite error
message depicts the full path from the application program, down through
successive layers, to the lowest-level function [f4()| in which the error was
detected. Figure 11 depicts a sample of a composite error message. The
complete error diagnostic, showing the full path through the various layers of
code, provides a context and clues for those tasked with troubleshooting and
correcting the error. Error files can be printed in hardcopy form for later
examination and analysis.

Measurement output files and data processing subsystems

If an 10T measurement process exccutes successfully to completion, it
produces a measurement data file. These files are formatted as standard COSDAF
files, and, because they are ASCli-encoded, can be viewed, edited, and im-
ported into other applications, such as word processing or graphics software.
Once data files have been produced, they can be processed by other MPCP
subsystems for database cntry. printing, and plotting. Permanent measurcment
data files arc stored in a database.

The MpPcp Database Management subsystem stores, scarches, and retrieves
files for display, printing, and plotting, as depicted in Figure 6. The subsystem
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Mon May 17 14:11:34 1993 /proj/eutel/bin/flxerp

flxerp measurement cannot measure flux/eirp for channel 4.

meas_init_hdwr(): Unable to initialize hardware.

ms_init_hdwr(): hp3488a_new failed.

_hp3488a_init(): ZZ401 switch unit - slot #1 unavailable.

_hp3488a_get_slot(): ZZ401 switch unit - cannot communicate with switch control unit.

_hpib_io_dcderr(): HP-IB timeout, receive data ZZ401 9 /dev/hpib/1.

System call hpib_io(): Connection timed out (errno is 238).

Try Again

Cancel

Figure 11. Composite Error Message Format
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consists of a formal database containing a summary of the information associ-
ated with every measurement that has been stored (called the “index”), and a
set of separate measurcment data files containing the raw and processed
results from each measurement (called “files™). The index is used to quickly
locate data files of interest, just as a card catalog is used in a library. Once a
particular data file has been located, it may be plotted. printed, or post-
processed in some fashion.

The MPCP Plotting Services subsystem plots measurement data both dur-
ing and after the measurcment. The subsystem supports measurement systems
in which many different types of data plots, to either soft output (e.g.. CRT
displays) or hardcopy devices, arc necessary for real-time measurements and
post-measurement data analysis, as depicted in Figure 6. Plot formatting is
specificd by a style lile that can easily be cdited to change the appearance of
the plot, without changing either the measurcment data or the plotting pro-
gram. Figure 12 illustrates specifications that can be accommodated in the
plot style file.

The MPCP Printing Services subsystem prints measurement data, supports
systems output, and formats data in much the same way as the plotting
subsystem. Printouts are generated automatically at the conclusion of a
measurcment process, Or at uscr request.

The mpCP Interactive Plotting subsystem significantly extends the post-
measurement data analysis and manipulation capability of the measure-
ment system beyond that supplied by MPCP Plotting Services, and provides a
general-purpose capability to prepare finished, report-quality plots and graphs.
It can plot any pair of columns of data in a COSDAF file. This is significant
because, although the measurement data file contains a table with many columns
of data, the MPCP Plotting Services subsystem normally plots only two columns
(or three columns: Y1 and Y2 vs X). The Interactive Plotting subsystem also
supports graphs with two y axes (Y1 and Y2 vs X). The data on a plot can be
manipulated and edited in the following ways:

* Points can be cut and pasted.

+ Scales, axcs, and labels can be changed.

+ Graphs or points can be annotated and/or marked.

» The plot can be zoomed in or out.

« New data points can be added via the keyboard and/or from existing
files.

 Data from one or more files can be plotted on the same graph as data
from another file.
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Figure 12. MPCP Plotiing Specifications

Various data transformations arc also supported. Two or more traces can
be merged, algebraically added, or algebraically subtracted. For example, a
calibration file can be subtracted from a measurement file, or two measure-
ment traces can be subtracted from one another, leaving the residual differ-
ences. Finished plots can be stored and later retrieved.

Conclusions

The concept of building MMS software on an engineered platform of reus-
able facilities and services has been presented. Contemporary software engi-
neering principles and practices—such as design-for-reusability; modularity
and encapsulation of task-specific functions; object-oriented mcthodology and
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implementation; hierarchical layering of code; linkable objcct code libraries;
and processing subsystems—were used to develop and deploy robust, flex-
ible, adaptable MMS software.

The desire for code reusability directed development of the MPCP, a special-
purpose operating system that significantly reduces the timc and expense
involved in developing and implementing a cost-cffective MMS. The ficld-
tested MPCP software cnables the limited number of expert softwarc develop-
ers available to focus on the application’s design and implementation, rather
than on the softwarc infrastructure required to support modern 10T and other
microwave measurement and control systems.

Supported by the MPCP interprocess/intermachine mail communications
subsystem, scheduler, and datapool, the 10T measurement architecture physi-
cally and logically partitions the overall task into separate user intertace and
measurement program entities, each optimized to perform a specific task. The
network system architecture enables the user interface program and
measurement program to execute on different machines and at different times
of day—providing the system with a high degree of operational flexibility,
including remote access and control of the 10T measurement equipment.

The concepts and methods applied in this study to the complex task of
building automated 10T systems in a dynamic environment are also applicable
to similar measurement-oriented systems, such as those used for communica-
tions systems monitoring.
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